Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biotechnol ; 366: 72-84, 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2276403

ABSTRACT

The COVID-19 pandemic has greatly impacted the global economy and health care systems, illustrating the urgent need for timely and inexpensive responses to pandemic threats in the form of vaccines and antigen tests. Currently, antigen testing is mostly conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an alternative ELISA approach using inexpensive, biogenic materials and permitting quick detection based on components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Cts1. As a unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or immobilization tag. Recent work has demonstrated that nanobodies are suitable target proteins. These proteins represent a very versatile alternative antibody format and can quickly be adapted to detect novel antigens by camelidae immunization or synthetic libraries. In this study, we exemplarily produced different mono- and bivalent SARS-CoV-2 nanobodies directed against the spike protein receptor binding domain (RBD) as Cts1 fusions and screened their antigen binding affinity in vitro and in vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface. This provides a solid base for future development of inexpensive antigen tests utilizing unconventionally secreted nanobodies as antigen trap and a matching ubiquitous and biogenic surface for immobilization.


Subject(s)
COVID-19 , Chitinases , Single-Domain Antibodies , Ustilago , Humans , Ustilago/genetics , Ustilago/metabolism , Chitin/metabolism , Pandemics , SARS-CoV-2/metabolism , Chitinases/metabolism
2.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1463766

ABSTRACT

Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N'-diacetyl-ß-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s-1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains-2x Fn3/Big3 and a carbohydrate binding module-that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.


Subject(s)
Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/metabolism , Clostridium/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Chitinases/chemistry , Chitinases/genetics , Clostridium/growth & development , Clostridium/isolation & purification , Gastrointestinal Microbiome , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL